UKUK USUSIndiaIndia

Every Question Helps You Learn

Join Us
Streak
Leading Streak Today
Your Streak Today
Streak
Leading Streak Today
Your Streak Today
Electricity - The Motor Effect
In Fleming's left hand rule, what does the thumb represent?

Electricity - The Motor Effect

This GCSE Physics Electricity quiz takes a look at the motor effect. When an electric current passes through a wire, it creates a magnetic field around the wire. If the magnetic field from the wire is placed in another magnetic field, they interact, causing the wire to move. This is known as the motor effect. Electric motors that work off direct current are found in many devices we use in everyday life. They are energy transfer devices that convert electrical energy into rotational kinetic energy. As with any energy transfer, it is never a perfect conversion, some energy is always wasted. In the case of an electric motor, the wasted energies are heat (from friction and the heating effect of an electric current) and sound.

The motor effect is sometimes called the catapult effect since that is the effect on a single current-carrying wire in a magnetic field.

1.
What is produced when a current flows through a wire?
Voltage
Magnetic field
Mass 
Neutrons
The magnetic field can be visualised as a pattern of circular lines surrounding the wire. These show up using iron filings on a piece of card
2.
Which of the following is an application of an electromagnet?
Crane for lifting steel/iron
Drum set
Light switch
PC mouse
Electromagnets can be very powerful
3.
How can the force applied to a current carrying wire be increased?
Increase magnetic field
Decrease magnetic field
Both increase and decrease magnetic field
Neither increase nor decrease magnetic field
In large electric motors, the magnets are electromagnets
4.
Another way to increase the force is to …
decrease the current
reverse the current
keep the current the same
increase the current
The force generated by the interaction of the two magnetic fields depends on both of the factors in questions 3 and 4
5.
An electrical conductor will not experience a force in a circuit if it is placed in what position relative to the magnetic field?
Parallel
Perpendicular
At 45 degrees to the field
At 120 degrees to the field
The two magnetic fields will interact if they are at any angle other than zero degrees
6.
How can the force experienced by a current carrying wire be reversed?
Reverse direction of current/magnetic field
Increase the current above a threshold point
Decrease the current below a threshold point
You cannot reverse the force felt by a wire
Simple really!
7.
Fleming's left hand rule can be used to work out the direction of movement (force), magnetic field and current. What does the thumb represent in this rule?
Nothing
Field
Current
Movement (force)
Knowing Fleming's left hand rule can quickly gain you marks. Knowing which direction a particular force, field or current is acting is often required to answer certain questions
8.
What is used to transfer an electrical current to a loop of wire sitting in a magnetic field, in a motor?
Communicator
Commutator
Commentator
Conductor
Commutators allow current to travel through a circuit despite not being fixed to a position in a circuit. This allows the wires that make up the coil not to become tangled when the motor is spinning
9.
Revisiting Fleming's left hand rule, the current is represented by …
the thumb
the little finger
second (middle) finger
first finger
First finger = Field, SeCond finger = Current, ThuMb = Movement (direction of force)
10.
What is the direction of the magnetic field relative to the current in a current carrying wire?
Parallel
Perpendicular
Parallel and perpendicular
The magnetic field in a current carrying wire cannot be measured
In other words, whatever direction the current is flowing, the direction of the magnetic field will be at ninety degrees to that
You can find more about this topic by visiting BBC Bitesize - Magnetism and the motor effect

Author:  Martin Moore

© Copyright 2016-2024 - Education Quizzes
Work Innovate Ltd - Design | Development | Marketing