USUS UKUKIndiaIndia

Every Question Helps You Learn

Join Us
Streak
Leading Streak Today
Your Streak Today
Streak
Leading Streak Today
Your Streak Today
Number Sequences
2, 4, 6, 8, Mary's at the cottage gate.

Number Sequences

This Math quiz is called 'Number Sequences' and it has been written by teachers to help you if you are studying the subject at middle school. Playing educational quizzes is a fabulous way to learn if you are in the 6th, 7th or 8th grade - aged 11 to 14.

It costs only $12.50 per month to play this quiz and over 3,500 others that help you with your school work. You can subscribe on the page at Join Us

A number sequence involves following a pattern. Spotting the pattern is the key! For example, in the sequence 8, 16, 32, 64, ... each number in the sequence can be got from the previous term by multiplying by 2. In this case, the rule is: multiply by 2. The numbers in a sequence are called 'terms': in 5, 10, 15, 20, ... '5' is the first term and '15' is the third term.

1 .
Which sequence can be formed from the given rule for the nth term?
nth term = -5n
-5, -10, -15, -20, ...
5, 10, 15, 20, ...
0, -5, -10, -15, ...
-5, -25, -125, -625, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = -5n. As follows:
n = 1 gives -5 × 1 = -5
n = 2 gives -5 × 2 = -10
n = 3 gives -5 × 3 = -15
n = 4 gives -5 × 4 = -20
2 .
Which sequence can be formed from the given rule for the nth term?
nth term = n2
1, 4, 9, 16, ...
2, 4, 6, 8, ...
1, 2, 3, 4, ...
1, 8, 27, 64, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = n2. As follows:
n = 1 gives 12 = 1
n = 2 gives 22 = 4
n = 3 gives 32 = 9
n = 4 gives 42 = 16
3 .
Which sequence can be formed from the given rule for the nth term?
nth term = 2n + 3
1, 7, 9, 13, ...
1, 5, 7, 9, ...
2, 5, 7, 9, ...
5, 7, 9, 11, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = 2n + 3. As follows (do the multiplication first THEN the addition):
n = 1 gives 2 × 1 + 3 = 5
n = 2 gives 2 × 2 + 3 = 7
n = 3 gives 2 × 3 + 3 = 9
n = 4 gives 2 × 4 + 3 = 11
4 .
Which sequence can be formed from the given rule for the nth term?
nth term = 4n - 1
5, 7, 11, 15, ...
3, 7, 12, 15, ...
3, 8, 11, 15, ...
3, 7, 11, 15, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = 4n - 1. As follows (do the multiplication first THEN the subtraction):
n = 1 gives 4 × 1 - 1 = 3
n = 2 gives 4 × 2 - 1 = 7
n = 3 gives 4 × 3 - 1 = 11
n = 4 gives 4 × 4 - 1 = 15
5 .
Which sequence can be formed from the given rule for the nth term?
nth term = 2n - 1
1, 3, 5, 9, ...
1, 3, 5, 7, ...
0, 1, 3, 5, ...
1, 5, 15, 45, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = 2n -1. As follows (do the multiplication first THEN the subtraction):
n = 1 gives 2 × 1 - 1 = 1
n = 2 gives 2 × 2 - 1 = 3
n = 3 gives 2 × 3 - 1 = 5
n = 4 gives 2 × 4 - 1 = 7
6 .
Which sequence can be formed from the given rule for the nth term?
nth term = -n + 1
0, 1, 2, 3, ...
0, -1, -2, -3, ...
1, 2, 3, 4, ...
1, 3, 5, 7, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = -n + 1. As follows:
n = 1 gives -1 + 1 = 0
n = 2 gives -2 + 1 = -1
n = 3 gives -3 + 1 = -2
n = 4 gives -4 + 1 = -3
7 .
Which sequence can be formed from the given rule for the nth term?
nth term = 4n + 7
11, 15, 18, 23, ...
11, 13, 15, 19, ...
11, 15, 19, 23, ...
11, 12, 15, 19, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = 4n + 7. As follows (do the multiplication first THEN the addition):
n = 1 gives 4 × 1 + 7 = 11
n = 2 gives 4 × 2 + 7 = 15
n = 3 gives 4 × 3 + 7 = 19
n = 4 gives 4 × 4 + 7 = 23
8 .
Which sequence can be formed from the given rule for the nth term?
nth term = 6n
6, 12, 18, 24, ...
0, 6, 12, 18, ...
2, 4, 6, 8, ...
1, 6, 12, 18, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = 6n. As follows (do the multiplication first THEN the addition):
n = 1 gives 6 × 1 = 6
n = 2 gives 6 × 2 = 12
n = 3 gives 6 × 3 = 18
n = 4 gives 6 × 4 = 24
9 .
Which sequence can be formed from the given rule for the nth term?
nth term = n2 - n
0, 3, 8, 15, ...
0, 2, 6, 12, ...
0, 2, 4, 6, 8, ...
1, 3, 5, 7, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = n2 - n. As follows (do the multiplication first THEN the addition):
n = 1 gives 12 - 1 = 0
n = 2 gives 22 - 2 = 2
n = 3 gives 32 - 3 = 6
n = 4 gives 42 - 4 = 12
10 .
Which sequence can be formed from the given rule for the nth term?
nth term = 2n
2, 4, 8, 16, ...
3, 6, 9, 12, ...
1, 2, 4, 6, ...
2, 4, 6, 8, ...
The terms of the sequence are found by first putting n = 1, then n = 2, then n = 3 and finally n = 4 in the rule for the nth term = 2n. As follows:
n = 1 gives 2 × 1 = 2
n = 2 gives 2 × 2 = 4
n = 3 gives 2 × 3 = 6
n = 4 gives 2 × 4 = 8
Author:  Frank Evans

© Copyright 2016-2025 - Education Quizzes
Work Innovate Ltd - Design | Development | Marketing